资源类型

期刊论文 388

年份

2023 30

2022 29

2021 20

2020 34

2019 23

2018 19

2017 15

2016 14

2015 14

2014 8

2013 16

2012 14

2011 19

2010 16

2009 12

2008 20

2007 23

2006 14

2005 13

2004 3

展开 ︾

关键词

动力特性 6

动态规划 5

动力响应 3

力学性能 2

动力学 2

动力气垫 2

动态 2

动态性能 2

动态模拟 2

动态特性 2

动态管理 2

可视化仿真 2

地效翼船 2

扬矿管 2

模态 2

海上风电场 2

深海采矿 2

6G;广域覆盖信令小区;多维资源分配;深度Q网络(DQN) 1

A*算法 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of carbon black on the dynamic moduli of asphalt mixtures and its master curves

Chuangmin LI, Fanbo NING, Yuanyuan LI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 918-925 doi: 10.1007/s11709-019-0526-6

摘要: Modulus is one of the main parameters during the design of asphalt pavement structure, the newest specifications of China gives the dynamic moduli ranges of commonly used asphalt mixtures with base asphalt (BA) or styrene-butadiene-styrene modified asphalt (SBS MA), while the moduli ranges of mixtures with carbon black modified asphalt (CB MA) are not recommended. To investigate the CB effect on the dynamic moduli of CB MA mixtures, one commonly used asphalt mixture (AC-20) was designed with BA, SBS MA, and CB MA, respectively. Then, the uniaxial compression dynamic modulus tests were conducted at different temperatures and loading frequencies, the master curves of asphalt mixtures were analyzed based on the time-temperature equivalence principle. The results show that ith increasing loading frequency, the temperature dependence of dynamic moduli of all asphalt mixtures tend to be less obvious. Both SBS and CB can decrease the temperature sensitivity of asphalt mixture, the SBS MA mixture has the lowest temperature sensitivity, followed by CB MA and BA mixture. In addition, CB and SBS can obviously improve the dynamic modulus of the BA mixture, enhance the anti-deformation performance of pavement structure, and the improvement effect of CB is almost the same with SBS.

关键词: dynamic modulus     carbon black     master curve     modified asphalt     asphalt mixture    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 294-300 doi: 10.1007/s11465-015-0351-0

摘要:

The elastic modulus of a deposit (Ed) can be obtained by monitoring the temperature (?T) and curvature (?k) of a one-side coated long plate, namely, a one-dimensional (1D) deformation model. The aim of this research is to design an experimental setup that proves whether a 1D deformation model can be scaled for complex geometries. The setup includes a laser displacement sensor mounted on a robotic arm capable of scanning a specimen surface and measuring its deformation. The reproducibility of the results is verified by comparing the present results with Stony Brook University Laboratory’s results. The ?k-?T slope error is less than 8%, and the Ed estimation error is close to 2%. These values reveal the repeatability of the experiments. Several samples fabricated with aluminum as the substrate and 100MXC nanowire (Fe and Cr alloy) as the deposit are analyzed and compared with those in finite element (FE) simulations. The linear elastic behavior of 1D (flat long plate) and 2D (squared plate) specimens during heating/cooling cycles is demonstrated by the high linearity of all ?k-?T curves (over 97%). The Ed values are approximately equal for 1D and 2D analyses, with a median of 96 GPa and standard deviation of 2 GPa. The correspondence between the experimental and simulated results for the 1D and 2D specimens reveals that deformation and thermal stress in coated specimens can be predicted regardless of specimen geometry through FE modeling and by using the experimental value of Ed. An example of a turbine-blade-shaped substrate is presented to validate the approach.

关键词: in-plane     Young’s modulus     curvature temperature     thermal stress     coating    

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 536-547 doi: 10.1007/s11709-017-0451-5

摘要: Temperature segregation is non-uniform temperature distributionacross the uncompacted asphalt mat during paving operations and mayhave detrimental effects on the quality and performance of asphaltpavements. However, many research studies conducted across the UShave reported mixed observations regarding its effects on the initialquality and long-term performance of asphalt pavements.?The objectiveof this study was to determine the effects of the temperature segregationon the density and mechanical properties of Louisiana asphalt mixtures.Seven asphalt rehabilitation projects across Louisiana were selected.A multi-sensor infrared bar (Pave-IR) system and a hand-held portablethermal camera were used to measure the temperature of asphalt mats.Field core samples were collected from various areas with varyingseverity levels of temperature segregation and tested for the density,fracture resistance (J ) by semi-circular bending(SCB), rut depth by wheel tracking, and dynamic modulus (|E*|) byindirect tension (IDT) devices.?Two distinctive patterns of non-uniformtemperature distribution were observed: a cyclic and irregular temperaturesegregations. Laboratory test results showed that highly temperaturesegregated asphalt pavements (i.e., temperature differentials ≥41.7°C) can have significantly lower densities and the mechanicalproperties than the non-segregated area, especially when the temperaturedifferentials are measured at compaction.

关键词: temperature segregation     temperature differential     pavement density     semi-circular bending     wheel tracking     dynamic modulus    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1653-1653 doi: 10.1007/s11709-019-0578-7

摘要: In recent years, there has been an increased interest in the use of fiber reinforced polymer (FRP) in the construction industry. However, the E-modulus and strength of such members at high service temperatures is still unknown. Modulus and strength of FRP at high service temperatures are highly required parameters for full design. The knowledge and application of this could lead to a cost effective and practical consideration in fire safety design. Thus, this paper proposes design methods for calculating the E-modulus and strength of FRP members at different temperatures. Experimental data from literature were normalized and compared with the results predicted by this method. It was found that the proposed design methods conservatively estimate the E-modulus and strength of FRP structural members. In addition, comparison was also made with direct references to the real behavior of materials. It was found to be satisfactory. Finally, an application is provided.

关键词: concrete     fiber reinforced polymer     E-modulus     strength     temperatures    

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

《中国工程科学》 2013年 第15卷 第8期   页码 63-69

摘要:

根据南京长江第四大桥钢桥面铺装试验研究成果,对复合浇筑式沥青混合料性能进行了分析研究,通过系统分析动稳定度与温度、汽车轮载、车速及行车道间的关系,结合南京地区汽车超载情况的研究,提出并建立了复合浇筑式钢桥面铺装的车辙评估模型。

关键词: 复合浇筑式     钢桥面铺装     动态模量     当量轮次     车辙评估模型    

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

《结构与土木工程前沿(英文)》   页码 812-826 doi: 10.1007/s11709-023-0940-7

摘要: A falling weight deflectometer is a testing device used in civil engineering to measure and evaluate the physical properties of pavements, such as the modulus of the subgrade reaction (Y1) and the elastic modulus of the slab (Y2), which are crucial for assessing the structural strength of pavements. In this study, we developed a novel hybrid artificial intelligence model, i.e., a genetic algorithm (GA)-optimized adaptive neuro-fuzzy inference system (ANFIS-GA), to predict Y1 and Y2 based on easily determined 13 parameters of rigid pavements. The performance of the novel ANFIS-GA model was compared to that of other benchmark models, namely logistic regression (LR) and radial basis function regression (RBFR) algorithms. These models were validated using standard statistical measures, namely, the coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The results indicated that the ANFIS-GA model was the best at predicting Y1 (R = 0.945) and Y2 (R = 0.887) compared to the LR and RBFR models. Therefore, the ANFIS-GA model can be used to accurately predict Y1 and Y2 based on easily measured parameters for the appropriate and rapid assessment of the quality and strength of pavements.

关键词: falling weight deflectometer     modulus of subgrade reaction     elastic modulus     metaheuristic algorithms    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1654-1654 doi: 10.1007/s11709-020-0622-7

Simulation of viscoelastic behavior of defected rock by using numerical manifold method

Feng REN, Lifeng FAN, Guowei MA

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 199-207 doi: 10.1007/s11709-011-0102-1

摘要: Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities. Firstly, validation of the numerical manifold method is carried out by simulations of a longitudinal stress wave propagating through intact and cracked rock bars. The behavior of the stress wave traveling in a one-dimensional rock bar with randomly distributed microcracks is subsequently studied. It is revealed that the highly defected rock bar has significant viscoelasticity to the stress wave propagation. Wave attenuation as well as time delay is affected by the length, quantity, specific stiffness of the distributed microcracks as well as the incident stress wave frequency. The storage and loss moduli of the defected rock are also affected by the microcrack properties; however, they are independent of incident stress wave frequency.

关键词: stress wave propagation     defected rock     numerical manifold method     viscoelastic behavior     storage modulus     loss modulus    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 487-500 doi: 10.1007/s11709-020-0609-4

摘要: The objective of this study is to evaluate the performance of the artificial neural network (ANN) approach for predicting interlayer conditions and layer modulus of a multi-layered flexible pavement structure. To achieve this goal, two ANN based back-calculation models were proposed to predict the interlayer conditions and layer modulus of the pavement structure. The corresponding database built with ANSYS based finite element method computations for four types of a structure subjected to falling weight deflectometer load. In addition, two proposed ANN models were verified by comparing the results of ANN models with the results of PADAL and double multiple regression models. The measured pavement deflection basin data was used for the verifications. The comparing results concluded that there are no significant differences between the results estimated by ANN and double multiple regression models. PADAL modeling results were not accurate due to the inability to reflect the real pavement structure because pavement structure was not completely continuous. The prediction and verification results concluded that the proposed back-calculation model developed with ANN could be used to accurately predict layer modulus and interlayer conditions. In addition, the back-calculation model avoided the back-calculation errors by considering the interlayer condition, which was barely considered by former models reported in the published studies.

关键词: asphalt pavement     interlayer conditions     finite element method     artificial neural network     back-calculation    

The stress relaxation of cement clinkers under high temperature

Xiufang WANG,Yiwang BAO,Xiaogen LIU,Yan QIU

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 413-417 doi: 10.1007/s11465-015-0357-7

摘要:

The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

关键词: stress relaxation     high temperature     cement clinker     compression     elastic modulus    

Linear viscoelastic behavior of asphalt binders and mixtures containing very high percentages of reclaimed asphalt pavement

《结构与土木工程前沿(英文)》   页码 1211-1227 doi: 10.1007/s11709-023-0983-9

摘要: The primary aim of this study is to correlate the impact of aggregates, if any, on the viscoelastic behavior of rejuvenated asphalt mixtures containing very high amounts of reclaimed asphalt pavement (RAP) (> 50%). First, gradation of 100% RAP was rectified, using a modified Bailey method by adding virgin aggregates to achieve two coarse dense-graded and one fine dense-graded blends. Complex modulus test was then performed from −35 to +35 °C and 0.01–10 Hz. In addition to performance grade (PG) testing, extracted and recovered binders from different asphalt mixtures underwent shear complex modulus test within −8 °C to high temperature PG and frequencies from 0.001 to 30 Hz. Cole−Cole, Black space, complex modulus and phase angle master curves were constructed and Shift-Homothety-Shift in time-Shift (SHStS) transformation was used to compare the linear viscoelastic behavior of asphalt binders and mixtures. The influence of aggregates on the viscoelastic behavior of asphalt mixtures depends on temperature and/or frequency. The role of asphalt binders in the behavior of asphalt mixtures is more pronounced at high temperatures and the effect of the aggregate structure increases as the temperature falls. The maximum difference (60% to 70%) in the viscoelastic behavior of the binder and mixture based on SHStS transformed Cole−Cole curves is within the phase angle of 15°–20°.

关键词: RAP     complex modulus     SHStS transformation     rejuvenation     behavior of asphalt binder and mixture    

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 270-281 doi: 10.1007/s11709-014-0265-7

摘要: Many researches have been carried out to study the fresh and hardened properties of concrete containing crumb rubber as replacement to fine aggregate by volume, yet there is no specific guideline has been developed on the mix design of the rubbercrete. The experimental program, which has been developed and reported in this paper, is designed and executed to provide such mix design guidelines. A total of 45 concrete mixes with three different water to cement ratio (0.41, 0.57 and 0.68) were cast and tested for fresh and mechanical properties of rubbercrete such as slump, air content, unit weight, compressive strength, flexural strength, splitting tensile strength and modulus of elasticity. Influence of mix design parameters such as percentage of crumb rubber replacement, cement content, water content, fine aggregate content, and coarse aggregate content were investigated. Three levels of slump value (for conventional concrete mixes) has been selected; low, medium and high slump. In each slump level, water content was kept constant. Equations for the reduction factors (RFs) for compressive strength, flexural strength, splitting tensile strength and modulus of elasticity have been developed. These RFs can be used to design rubbercrete mixes based on the conventional mix (0% crumb rubber content)

关键词: crumb rubber     recycled tire     mix design     reduction factor     strength     modulus elasticity    

Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach

Huailei CHENG; Liping LIU; Lijun SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 267-280 doi: 10.1007/s11709-022-0811-7

摘要: Asphalt pavement is a key component of highway infrastructures in China and worldwide. In asphalt pavement design and condition assessment, the modulus of the asphalt mixture layer is a crucial parameter. However, this parameter varies between the laboratory and field loading modes (i.e., loading frequency, compressive or tensile loading pattern), due to the viscoelastic property and composite structure of the asphalt mixture. The present study proposes a comprehensive frequency-based approach to correlate the asphalt layer moduli obtained under two field and three laboratory loading modes. The field modes are vehicular and falling weight deflectometer (FWD) loading modes, and the laboratory ones are uniaxial compressive (UC), indirect tensile (IDT), and four-point bending (4PB) loading modes. The loading frequency is used as an intermediary parameter for correlating the asphalt layer moduli under different loading modes. The observations made at two field large-scale experimental pavements facilitate the correlation analysis. It is found that the moduli obtained via laboratory 4PB tests are pretty close to those of vehicular loading schemes, in contrast to those derived in UC, IDT, and FWD modes, which need to be adjusted. The corresponding adjustment factors are experimentally assessed. The applications of those adjustment factors are expected to ensure that the moduli measured under different loading modes are appropriately used in asphalt mixture pavement design and assessment.

关键词: asphalt mixture layer     stiffness modulus     loading mode     UC/4PB/IDT     FWD     frequency    

标题 作者 时间 类型 操作

Effect of carbon black on the dynamic moduli of asphalt mixtures and its master curves

Chuangmin LI, Fanbo NING, Yuanyuan LI

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

期刊论文

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

期刊论文

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Simulation of viscoelastic behavior of defected rock by using numerical manifold method

Feng REN, Lifeng FAN, Guowei MA

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

期刊论文

The stress relaxation of cement clinkers under high temperature

Xiufang WANG,Yiwang BAO,Xiaogen LIU,Yan QIU

期刊论文

Linear viscoelastic behavior of asphalt binders and mixtures containing very high percentages of reclaimed asphalt pavement

期刊论文

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

期刊论文

Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach

Huailei CHENG; Liping LIU; Lijun SUN

期刊论文